
MATH 2710: NOTES FOR ANALYSIS

The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in
several settings. We will start with finite limits of sequences, then cover infinite limits, and then
look at limits of functions. We have not given a proper definition of R, so we can’t really treat
limits completely because they may not exist just in Q. However, all the relevant definitions make
sense in Q. I will note in the text where the situation is different between Q and R.

Sequences and limits of sequences

A sequence is just a function with domain N. We will mostly be interested in sequences with
values in the real numbers. The usual function notation a : N → R, which would list the values
in the sequence as a(1), a(2), a(3), . . . is often not the most convenient way to write a sequence.
Instead we write the argument as a subscript, so the foregoing would read: a1, a2, a3, · · · . Sometimes
we write the sequence as {an} or {an}∞1 .

Like functions, sequences are often written as rules.

(1) The rule an = n2 defines a sequence with values 1, 4, 9, 16, 25, . . .
(2) We could write { 1n} for the sequence 1, 12 ,

1
3 ,

1
4 ,

1
5 , . . .

(3) Often, a sequence is given by writing a few terms and leaving the reader to infer a rule,
e.g. writing 2, 3, 5, 7, 11, 13, . . . to indicate the sequence of primes. This is imprecise, but
we will still do it from time to time.

The prototype of a convergent sequence is something like { 1n}, where it seems that the values
get arbitrarily close to zero and stay close to zero as n increases. The notion of closer is measured
using the distance (in the real numbers).

Definition 1. The distance between x, y ∈ R is |x− y|, where the absolute value is defined to be

|w| =

{
w if w ≥ 0,

−w if w < 0.

Now we have a distance we can talk about x being closer to y than z is to y, meaning |x− y| <
|z − y|. If ε > 0 we can also talk about x being closer than ε to y, meaning |x − y| < ε. We also
make a note of the most useful property of distance; we record it as a lemma.

Lemma 2 (Triangle Inequality). For points x, y, z ∈ R we have |x− y| ≤ |x− z|+ |z − y|.

Intuitively this says the distance from x to y is no larger than the distance from x to y via z.

Proof. This is a straightforward computation using cases. Clearly the points are arranged on a
line. Swapping x and y does not change the expression, so we can assume x > y (the case x = y
is obvious). The cases are then z ≥ x, x > z > y, y ≥ z. In all cases |x − y| = x − y. What
changes is the right side. If z ≥ x then |z − y| ≥ |x − y|, so the inequality is true. If y ≥ z then
also |x − z| ≥ |x − y| so the inequality is true. Finally, if x > z > y then |x − z| = x − z and
|z − y| = z − y so |x− z|+ |y − z| = x− z = |x− z|. This completes the proof. �

A very useful version of the triangle inequality is as follows.

Lemma 3. For points a, b ∈ R we have ||a| − |b|| ≤ |a− b|.
1
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Proof. The triangle inequality says |x+ y| ≤ |x|+ |y|, so |x+ y| − |y| ≤ |x|. Now put x+ y = a and
y = b, so x = a− b. We obtain |a| − |b| ≤ |a− b|. Repeating this for x+ y = b, y = a so x = b− a
we have |b| − |a| ≤ |b − a| = |a − b|. But ||a| − |b|| is equal to one of |a| − |b| or |b| − |a|, both of
which we showed are no larger than |a− b|, completing the proof. �

The idea of a sequence xn converging to a number L is supposed to capture that xn gets arbitrarily
close to L as n gets large. The notion of arbitrarily close clearly requires a quantifier: there is no
specific proximity we are looking for, but instead we are looking to get the xn closer to L than any
postive number ε. The notion of n being large also requires a quantifier. However, a little thought
shows us that for a specfic tolerance ε > 0 the distance we have to go out along the sequence to get
|xn−L| < ε depends both on ε and on the sequence. For example, with xn = 1

n , L = 0 and ε = 0.1
we need n > 10 to get |xn − L| < ε, while for ε = 0.01 we would need n > 100; if the sequence was
instead yn = n−2 then to get |yn − L| < 0.1 we’d only need n > 3 and to get |yn − L| < 0.01 we
would need n > 10. The fact that the quantifier for how far out in the sequence we go can depend
on ε means it should be determined after ε is determined.

The above shows that for every ε > 0 we want that there is a notion of far enough out in the
sequence, namely a N , possibly depending on ε, such that going any further out, meaning taking
n > N , gives |xn − L| < ε. This is what we use to make the formal definition of a limit. Before we
give this definition, one other important point: if you don’t understand the reasoning for defining
the limit in this way, it is not essential to do so. Some people use the definition for a long time
before they really “get it”. If it doesn’t make sense to you intuitively, don’t worry about it – just
learn the definition and practice using it

Definition 4. The sequence an converges to L if ∀ε > 0 ∃N such that n ≥ N =⇒ |xn − L| < ε.
This is often written as limn→∞ an = L or as an → L when n→∞.

From this we can make two other definitions. The first is that a sequence converges if there is
some number to which it converges, while the second is that otherwise it diverges.

Definition 5. A sequence an is convergent if there is an L such that an → L when n→∞. If an
is not convergent it is called divergent.

Remark 6. The issue of whether a sequence converges is where Q and R are very different. Even
if all the numbers we use in our definitions, except L, are from Q, there are sequences that converge
in R and do not converge in Q. A simple example: in a homework problem you saw how given a
positive number a you could construct a number ã so that ã2 is closer to 2 than a2. This can be
used recursively to construct a sequence xj in Q such that x2j → 2. Of course xj does not converge

in Q, because the limit L would have to have L2 = 2 and we also proved there is no such L ∈ Q.
But it turns out one can prove that xj →

√
2 in R.

Now we are going to do some simple proofs that specific sequences converge to specified values.
In each case the proof begins by saying that ε > 0 and then says how to choose N (depending on
ε) so as to ensure that n > N =⇒ |xn − L| < ε. However, the point is to learn how to do these
yourself, so each proof is preceeded by a description of the thought process used to make the choice
I gave. Note that the choice of N in each case is not unique – any larger N would have worked – so
the reasoning I give is not unique either. Your reasoning for a problem might be different to mine,
which is fine so long as it works.

Example 7. Prove { 1n} converges to 0 as n→∞.

My reasoning: Given ε > 0 I want N so n > N will make |xn − 0| = 1
n < ε. To get this I need

n > 1
ε , so I take N > 1

ε .

Proof: Given ε > 0 let N > 1
ε . If n > N then |xn − 0| = 1

n <
1
N < ε, so 1

n → 0.
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Example 8. Prove { 4n
n+3} converges to 4 as n→∞.

My reasoning: With xn = 4n
n+3 we have |xn − 4| =

∣∣4n−4(n+3)
n+3

∣∣ = 12
n+3 which will be less than ε if

n+ 3 > 12
ε . It is tempting to take N > 12

ε − 3, so n > N implies n+ 1 > 12
ε and 12

n+3 < ε, but it is

just as simple and perhaps a little neater to take N > 12
ε and say n > N implies 12

n+3 <
12
N < ε.

Proof: Given ε > 0 take N > 12
ε . Then n > N implies |xn − 4| =

∣∣4n−4(n+3)
n+3

∣∣ = 12
n+3 <

12
N < ε. So

xn → 4.

Example 9. Prove 3
n3 converges to 0 as n→∞.

Reasoning: We need N so n > N implies 1
n3 < ε. Evidently N >

(
3
ε

)1/3
will work, so we can use

that. An alternative would be to say that if n2 > 3, for which we only need n > N > 2 we would
have n3 > 3N so 3

n3 <
1
N < ε if N > 1

ε . I prefer this latter way, which requires N > max{2, 1ε}
only because the method is more flexible.
Proof: Given ε > 0 take N > max{2, 1ε}. Then N2 > 4 so n3 > 3n and 3

n3 <
1
n < ε which shows

the result.

Example 10. Prove { n+1
n2−3} converges to 0.

Reasoning: We need |n+1|
|n2−3| < ε. It it a bit messy to figure out what the best choice of N so n > N

would make this happen – we’d have to solve a quadratic equation – but we don’t need the best
N we just need one that works. Accordingly we make some crude inequalities that bound the
numerator and denominator just like we did in the previous problem. Notice |n+1| < 2n for n > 1.

Also, lets look for where |n2 − 3| > n2

2 . This occurs when n2 > 6, so when n > 2. If we have those

two inequalities and also 2n
(n2/2)

< ε, meaning n > 4
ε , then we get the inequality we want. So we

take N > max{2, 4ε}.
Proof: Given ε > 0 let N > max{2, 4ε}. If n > N then n > 2 which implies |n+1| < 2n and n2 > 6,

hence n2 − 3 > n2

2 . Then |n+1|
|n2−3| <

4n
n2 = 4

n < ε, showing the result.

At this point it might be worth summarizing the structure that appeared in all these proofs.
When giving a proof of a limit of a sequence from the definition, you can always use the following
structure:
Given ε > 0 here is a rule for getting N (usually as a function of ε) and an argument showing that
this choice of N ensures that |an − L| < ε.

It is now about time to prove that some sequences are divergent. The basic idea is to use
contradiction: assume that the sequence is convergent and derive a contradiction. This works well
on sequences that diverge to infinity, but also on sequences that oscillate around without settling
down in the real numbers. One way to have the latter occur is if the sequence appears to have
parts that are converging to different values. We will see examples of both types. In both cases the
key is that if the sequence did converge then all xn values are eventually close together, so if this
is not true the sequence must diverge.

Example 11. Prove that {(−1)n} does not converge as n→∞.
Reasoning: No matter how far you go out in the sequence −1, 1,−1, 1,−1, . . . you have points 1
and −1 that are separated by distance 2. If xn is within ε of L for all n then L is within ε of both
1 and −1. But the triangle inequality allows us to say that the distance between −1 and 1 is at
most the distance via L, which is | − 1− L|+ |1− L| so 2 < 2ε which gives ε > 1. If we take ε = 1
we should get a contradiction.
Proof: If the sequence converged to L then for ε = 1 there is N so n > N implies |xn − L| < 1.
But then 2 = 2ε > |xn − L| + |xn+1 − L| = | − 1 − L| + |1 − L| ≥ | − 1 − 1| = 2 by the triangle
inequality, a contradiction.
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In the previous example it looks like this sequence has two pieces: the odd terms are all −1 so
are converging to −1 and the even terms are all 1 so are converging to 1. The issue is that the
sequence can’t converge to two different places. The idea of the sequence having pieces that do
these two different things can be made precise using the idea of subsequences and limit points. We
won’t do that right now, but we will repeat the above argument to show that, in fact, it is always
impossible for a sequence to converge to two places.

Lemma 12. A convergent sequence has a unique limit.

Reasoning: we use a small modifiation of the argument used in the previous exercise. The idea
is that the sequence can’t simultaneously converge to two different points L and L′ because these
points are a positive distance apart, so it is not possible to be simultaneously arbitrarily close to
both of the points. The issue is to make this clear with some sort of ε and N . It may help to draw
a number line showing L and L′. When you do so you will see that it is not possible to be within
1
2 |L− L

′| of both L and L′, so this is what we take for ε in order to get a contradiction.

Proof. Suppose an → L and also an → L′ as n→∞. If L 6= L′ take ε = 1
2 |L−L

′| > 0 and get N1 so
n > N1 implies |xn−L| < ε and N2 so n > N2 implies |x−L′| < ε. Then for n > N = max{N1, N2}
we have by the triangle inequality

|L− L′| ≤ |L− xn|+ |L′ − xn| < ε+ ε = |L− L′|

which is a contradiction. We conclude L = L′, so the limit is unique. �

Example 13. Prove that {n2 − 1} does not converge as n→∞.
Reasoning: If it converged to L then for any tolerance ε it would eventually be within ε of L. If
this happened then n > N would mean n2 − 1 and (n+ 1)2 − 1 would be within 2ε of each other,
but the difference between them is 2n+ 2 > 2. So the condition for convergence will fail if ε < 1.
Proof: If the sequence converged to L then for ε = 1

2 we could take N so n > N would imply both

|n2−1−L| < ε and |(n+1)2−1−L| < ε. But then using the triangle inequality |n2−1−(n+1)2+1| <
2ε = 1, so |2n+ 1| < 1 when n > N , which is a contradiction.

For the previous example, if you were given the problem in a calculus class you would have been
expected to say that the limit is ∞. Obviously we can’t prove this using the definition we have for
sequences with finite limits, because the notion of |xn −∞| < ε does not make sense – the symbol
∞ does not refer to a number, and the distance we are using is not defined if one of the quantities
is infinite. Instead, what xn → ∞ is supposed to mean is that the values get arbitrarily large,
arbitrarily meaning larger than any fixed M . The expression xn → −∞ has a similar meaning.

Definition 14. We say xn → ∞ as n → ∞ or limn→∞ xn = ∞ if ∀M ∃N such that n > N =⇒
xn > M . We say xn → −∞ or limn→∞ xn = −∞ if ∀M ∃N such that n > N =⇒ xn < M .

Example 15. Prove that {n2 − 1} converges to ∞ as n→∞.
Reasoning: Given M we need to show that n2−1 is bigger than M . To do so we need to say n2−1
is larger than something. One way is to say n2 − 1 ≥ 2n− 1 > n if n > 2, and thus n2 − 1 > M if
N > M . So take N = max{2,M} to get the right inequalities.
Proof: Given M let N = max{2,M}. If n > N then n > 2 so n2 − 1 ≥ 2n− 1 > n > N ≥M .

Algebraic properties of limits

In calculus you would have been taught certain basic rules about limits that were used to compute
limits of complicated limits from simpler limits. They are established in the following theorems,
which are collectively referred to as the limit laws.

Theorem 16. If an → a and bn → b then (an + bn)→ (a+ b).
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Reasoning: We know |(an + bn)− (a+ b)| ≤ |an − a|+ |bn + b|. If we want this latter to be less
than a given ε > 0 we could make both |an− a| < ε

2 by making n > N1 and |bn− b| < ε
2 by making

n > N2. Then n > max{N1, N2} would make both true and give us the result.

Proof. Given ε > 0 use the assumed limits to take N1 so n > N1 implies |an − a| < ε
2 and N2 so

n > N2 so |bn− b| < ε
2 . Let N = max{N1, N2} so n > N implies both n > N1 and n > N2, whence

|an − a| < ε
2 and |bn − b| < ε

2 so

|(an + bn)− (a+ b)| ≤ |an − a|+ |bn − b| <
ε

2
+
ε

2
= ε.

�

Theorem 17. If an → a and bn → b then anbn → ab.

Reasoning: The key to this computation is that

|anbn − ab| = |an(bn − b) + b(an − a)| ≤ |an||bn − b|+ |b||an − a|.
We can take N1 so n > N1 implies |an − a| < ε

2|b| and therefore the second term less than ε
2 . We’d

like to deal with the first term in a similar way but in that case both factors depend on n, so we’d
want to |an| to be bounded by something. However, since an → a we can see that |an| ≤ |a| + 1
if n is large enough. Specifically, if ε = 1 then there is N2 so if n > N2 then |an − a| < 1 and
thus |a| − 1 ≤ |an| ≤ |a| + 1. Moreover, there is N3 so if n > N3 then |bn − b| < ε

2(|a|+1) . If

n > N = max{N1, N2, N3} then we should get the result. Along the way it seems we proved the
following result which will be useful later as well.

Lemma 18. If an → a then there is N so n > N implies |a| − 1 ≤ |an| ≤ |a|+ 1.

Proof. Take ε = 1 and N so n > N implies |an − a| < 1. Then |a| − 1 < |an| < |a|+ 1. �

Proof of theorem. Given ε > 0 use the assumed limit of an to take N1 so n > N1 implies |an− a| <
ε

2|b| . Using the lemma and an → a take N2 so n > N2 so |an| < |a|+ 1. Finally use the limit bn → b

to take N3 so n > N3 implies |bn − b| < ε
2(|a|+1) . Then

|anbn − ab| = |an(bn − b) + b(an − a)| ≤ |an||bn − b|+ |b||an − a| ≤ (|a|+ 1)
ε

2(|a|+ 1)
+ |b| ε

2|b|
= ε.

�

A special case of the preceding is that if bn → b then −bn → −b, because it is easy to prove that
the constant sequence −1 converges to −1. Then the fact that one can add convergent sequences
term by term and add the limits means one can do the same with differences. Specifically, an → a
and bn → b implies, as we just said, −bn → −b, and using the result about sums, an − bn → a− b.
To do the result corresponding to division we have to work a little harder.

Theorem 19. If an → a and a 6= 0 then 1
an
→ 1

a .

Reasoning: When we compute the difference between the sequence elements and the putative
limit we find ∣∣∣ 1

an
− 1

a

∣∣∣ =
1

|a||an|
|a− an|

which looks promising because |a− an| can be made small by making n large. However, to get this
less than ε > 0 we need to know a lower bound for |a||an|. There is no problem with |a| because it
is a non-zero constant. For |an| we could use the lemma already established and find N1 so n > N1

implies |an| ≥ |a|−1, but this would not be useful unless we knew |a|−1 > 0. We’d need something

better, like |an| > |a|
2 . But we can get this: just take ε = |a|

2 > 0 and then N1 so n > N1 implies

|an − a| < ε = |a|
2 , from which |an| > |a|

2 . Then |a||an| > |a|2
2 . We could then take N2 so n > N2

implies |an − a| < ε|a|2
2 .
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Proof. First take ε = |a|
2 and use an → a to get N1 so n > N1 implies |an−a| < |a|

2 so that |an| > |a|
2 .

Then take N2 so n > N2 implies |an − a| < ε|a|2
2 . For n > N = max{N1, N2} compute∣∣∣ 1

an
− 1

a

∣∣∣ =
1

|a||an|
|a− an| <

2

|a|2
ε|a|2

2
= ε

which proves the result. �

Obviously we can combine this with the previous theorem to obtain that an → a 6= 0 and bn → b
implies bn

an
→ b

a .

At this point we can use these theorems and the fact that 1
n → 0 to obtain the results of the

other exercises we have done so far which established convergence, as follows.

• We have 3
n3 = 3 1

n
1
n

1
n is a product of a constant sequence and three sequences that converge

to zero. By our product result applied three times we find 3
n3 → 0.

• Rewrite n+1
n2−3 = (1/n)+(1/n)(1/n)

1−3(1/n)(1/n) . Then the numerator converges to zero (by applying the

product result and the sum result) and the denominator converges to 1 by the same argu-
ment. Using the ratio result we find that the sequence converges to 0.

In fact it is not hard to see that the limit of any rational function of n can be computed in this
manner as n→∞, if the limit exists.

This does not mean that all limits can be done in this way. Here is an important one that cannot
be done in this manner.

Lemma 20. If |r| < 1 then rn → 0 as n→∞.

Reasoning: Given ε > 0 we need N so n > N implies |r|n < ε. We don’t know how to do this
for general r because we don’t know anything about the powers of r, but there is one situation in
which we do know about powers – the situation in which we can apply the binomial theorem. Some
thought suggests that this will let us prove the result in the special case where r = p

p+1 , because

then (p+ 1)n =
∑n

0

(
n
j

)
pn−j ≥ npn−1. So

( p

p+ 1

)n ≤ pn

npn−1
=
p

n
→ 0 as n→∞.

What is more, if |r| < p
p+1 this still proves |r|n → 0 as n→∞, and since the distance from |r| to 1

is positive (because |r| < 1) and p
p+1 → 1 as p→∞ we can find a p so p

p+1 is in the interval (|r|, 1),

which makes |r| < 1. This is the idea of the proof.

Proof. We begin with the fact that p
p+1 → 1 as p → ∞, which is easily established using the

limit laws. Use this to find a p for which
∣∣1 − p

p+1

∣∣ < 1 − |r|. Since p
p+1 < 1 we conclude that

|r| < p
p+1 < 1.

Now |rn − 0| = |r|n <
( p
p+1

)n
. Given ε > 0 take N > p

ε (notice that this is ok because we

already decided on the value for p). Then compute (p + 1)n ≥ npn−1 using the binomial theorem
and complete the proof by deducing ( p

p+ 1

)n ≤ p

n
≤ p

N
< ε. �

One can also determine that |r| > 1 implies |r|n →∞ as n→∞ by a similar method. Try it for
yourself!
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Series

We know how to add finitely many terms. Suppose we have a sequence a1, a2, a3, . . . . We can
make a new sequence as follows:

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

sn =

n∑
j=1

aj

If the sequence s1, s2, s3, . . . converged to a limit L, it would be natural to think of L as the result
of the infinite sum a1 + a2 + a3 + · · · . We define this to be the case.

Definition 21. If the sequence
{∑n

j=1 aj
}∞
n=1

converges to L as n → ∞ then we set
∑∞

1 aj = L
and call this a convergent series.

There are some basic examples of convergent series, as follows.

Example 22. Prove
∑∞

1
1

j(j+1) = 1.

Reasoning: We consider
∑n

1
1

j(j+1) . Several approaches are possible. One is to recognize that
1

k(k+1) = 1
k −

1
k+1 . Then

n∑
1

1

j(j + 1)
=
(
1− 1

2

)
+
(1

2
− 1

3

)
+
(1

3
− 1

4

)
+
(1

4
− 1

5

)
+ . . . .

Internal cancellation then suggests that the sum is 1 − 1
n+1 . We should be able to prove it by

induction. When n = 1 we get 1
2 . If the result was true for n then adding the next term we would

get

1− 1

n+ 1
+

1

(n+ 1)(n+ 2)
= 1− 1

n+ 1

(
1− 1

n+ 2

)
= 1− 1

n+ 2
,

which verifies the inductive step. Using this and the fact that 1
n+1 → 0 as n→∞ gives the result.

Proof. We first prove by induction that
∑n

1
1

j(j+1) = 1 − 1
n+1 . This is true for n = 1 where both

sides are 1
2 . If it is true for n then

n+1∑
1

1

j(j + 1)
= 1− 1

n+ 1
+

1

(n+ 1)(n+ 2)
= 1− 1

n+ 2
,

so the formula is true for all n ≥ 1 by induction.
Then use that 1

n+1 → 0 as n → ∞, which may be proved directly (given ε > 0 take N > 1
ε and

n+ 1 > N > 1
ε implies the result) or by writing it as (1/n)

1+(1/n) and using the limit laws. This implies∑n
1

1
j(j+1) → 1 as n→∞, establishing the convergence of the series and that its sum is 1. �

Example 23. If |r| < 1 prove that
∑∞

1 rn = 1
1−r .

Reasoning: This is done using a trick. Compute

(1− r)
n∑
1

rj =

n∑
1

rj −
n∑
1

rj+1 =

n∑
1

rj −
n+1∑
2

rj = 1− rn+1.

Thus
∑n

1 r
j = 1−rn+1

1−r . This and the fact that rn → 0 as n→∞ proves the result.
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Proof. Compute

(1− r)
n∑
1

rj =

n∑
1

rj −
n∑
1

rj+1 =

n∑
1

rj −
n+1∑
2

rj = 1− rn+1

and deduce
∑n

1 r
j = 1−rn+1

1−r . Use Lemma 20 from the end of the last section and the given fact

|r| < 1 to get rn → 0 as n → ∞ and multiply by the constant r
1−r to get rn+1

1−r → 0 as well. This

tells us that limn→∞
∑n

1 r
j = 1

1−r , which is what we wanted to prove. �

There are some other basic facts one can prove about convergence of series. One of the most
important is an easy test for divergence.

Theorem 24. If
∑∞

1 rj converges then rj → 0.

Reasoning: The point here is that convergence of the series means the sequence
∑n

1 rj converges,
so the terms of this sequence of partial sums are all close to a limiting value when n is large, which
in turn means that all the terms must be close to one another. However the difference between
consecutive terms for n and n + 1 is precisely rn+1, so rn+1 must also be small, in fact (by the
triangle inequality) less than twice the distance from the partial sum to its limit value. What
remains is to quantify this with ε and N .

Proof. The series converges to a limit L, so given ε > 0 there is N so n > N implies |
∑n

1 rj−L| <
ε
2 .

In particular, using n > N and thus n+ 1 > N , and the triangle inequality:

|rn+1| =
∣∣∣(n+1∑

1

rj − L
)
−
( n∑

1

rj − L
)∣∣∣ ≤ ∣∣n+1∑

1

rj − L
∣∣+
∣∣ n∑

1

rj − L
∣∣ < ε

so for n > N we have |rn+1| < ε which proves the result. �

It is a very important fact that you learned in calculus class that the converse of this result is
false: there are sequences for which the terms go to zero but the series diverges. A basic example
is the harmonic series

∑∞
1

1
j , for several reasons, one of which is that the method of proof is useful

elsewhere.

Theorem 25. The series
∑∞

1
1
j diverges to ∞.

Reasoning: The proof contains an important idea, which is that one can break the sum up into
blocks of different lengths such that each block contributes at least a constant amount to the sum.
The decomposition into blocks is as follows:

∞∑
1

1

j
= 1 +

1

2
+
(1

3
+

1

4

)
+
(1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

≥ 1 +
1

2
+
(1

4
+

1

4

)
+
(1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

≥ 1 +
1

2
+

1

2
+

1

2
+ · · ·

What we see is that adding the terms in the block from 2n−1 to 2n we have 2n−1 terms each of
size at least 2−n, so the sum of this block contributes at least 1

2 to the series. We can make this

precise using induction, because this will show
∑2n

1 ≥ 1+ n
2 . From here it is easy to show the series

diverges as stated.
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Proof. We prove by induction that
∑2n

1
1
j ≥ 1 + n

2 for n ≥ 1. This is true for n = 1, and the

inductive step is

2n+1∑
1

1

j
=

2n∑
1

1

j
+

2n+1∑
2n+1−1

1

j
≥ 1 +

n

2
+

2n+1∑
2n+1−1

2−(n+1) ≥ 1 +
n

2
+ 2n2−(n+1) = 1 +

n+ 1

2

so it is true for all n ≥ 1.

Now given M take N > 22M . Then n > N implies
∑N

1
1
j ≥

∑22M

1 ≥ 1 +M > M , so the partial

sums diverge to ∞. �

Limits of functions

The limits you most frequently encounter in calculus class are limits of functions not sequences.
In these notes we will limit ourselves to considering limits of the form limx→c f(x) = L where
f : (a, b) → R is a function from an open interval (a, b) ⊂ R and c ∈ (a, b). The idea is that we
can make the values of f(x) arbitrarily close to the limiting value L by making x close enough to
c, though not equal to c.

As with limits of sequences we want f(x) arbitrarily close to L, so we want for all ε > 0 that
we can make |f(x) − L| < ε. In order to get this to happen we need to take x close enough to c,
which requires quantification: we need a distance δ > 0, depending on f and ε, such that making
|x− c| < δ but x 6= c will ensure |f(x)− L| < ε.

Definition 26. For a function f : (a, b)→ R and c ∈ (a, b) we say limx→c f(x) = L if

∀ε > 0 ∃ δ > 0 such that 0 < |x− c| < δ =⇒ |f(x)− L| < ε.

Remark 27. The condition 0 < |x− c| is what ensures x 6= c. Our choice of c ∈ (a, b) ensures that
if δ < min{|a− c|, |b− c|} then 0 < |x− c| < δ implies x ∈ (a, b) and therefore f(x) makes sense.

Following the same notation as was used for limits of sequences we make the following further
deifnitions. As was the case for sequences, the question of whether a limit exists can have different
answers in Q and R, for the same reason.

Definition 28. The limit limx→c f(x) exists if there is L such that limx→c f(x) = L. If there is no
such L then we say the limit does not exist.

As with the definition of a limit of a sequence, do not worry unduly if you do not feel any intuition
for this definition; practice using the definition will eventually help you to make sense of it. It is,
however, critical that you know the definition and get comfortable with the structure of arguments
using it. As with limits of sequences, the structure of a proof is often different than the intuition
needed to figure it out, but once you have it you can put the proof in fairly standard form like the
following: Given ε > 0 define δ > 0 depending on ε and f , assume 0 < |x− c| < δ and then give an
argument which reasons from this assumption to the conclusion that |f(x)− L| < ε. We illustrate
with some examples.

Example 29. Problem: Show limx→1 2x− 3 = −1.
Reasoning: For f(x) = 2x − 3 we need to get ε > |f(x) − (−1)| > |2x − 3 + 1| = |2(x − 1)| by
making 0 < |x− 1| < δ. If we put δ = ε/2 then |x− 1| < δ = ε/2 so 2|x− 1| < ε, which works.
Proof: Given ε > 0 let δ = ε/2 and suppose 0 < |x−1| < δ. Then |f(x)−(−1)| = |2(x−1)| < 2δ = ε

In the previous problem we did not really need 0 < |x−1| because at x = c we had |2x−3−(−1)| =
0. However it is not so difficult to give a similar example where the 0 < |x−c| condition is essential.

Example 30. Problem: Show that lim
x→−2

x2 + 5x+ 6

x+ 2
= 1.

Reasoning: Factoring the numerator we have x2 + 5x + 6 = (x + 2)(x + 3). For x 6= −2 we can



10 MATH 2710: NOTES FOR ANALYSIS

then cancel the common factor of x+ 2 from the denominator and the numerator, so |f(x)− 1| =
|x+ 3− 1| = |x+ 2|, and we must prove this is less than ε when 0 < |x+ 2| < δ. Clearly it suffices
to set δ = ε.
Proof: Given ε > 0 let δ = ε and suppose 0 < |x + 2| < δ. Factoring the function in the limit we
obtain ∣∣∣x2 + 5x+ 6

x+ 2
− 1
∣∣∣ =

∣∣∣(x+ 2)(x+ 3)

x+ 2
− 1
∣∣∣ = |x+ 3− 1| = |x+ 2| < δ = ε

where the cancellation is justified by the fact that |x+ 2| > 0. This proves the result.

Example 31. Problem: Show limx→2 x
2 = 4.

Reasoning: We need to show |x2 − 4| < ε if |x − 2| is small enough. The essential point is
that x2 − 4 contains a factor of x − 2. Specifically, x2 − 4 = (x − 2)(x + 2), which implies
|x2 − 4| = |x − 2||x + 2|. If we knew |x − 2| < δ then 2 − δ < x < 2 + δ so |x + 2| < 4 + δ, which
would make |x2− 4| < (4 + δ)|x− 2| < (4 + δ)δ. We’d want (4 + δ)δ ≤ ε to complete the argument.
It is a bit messy to choose δ using the quadratic formula, so instead we just require that δ < 1 so
(4+ δ)δ < 5δ and choose δ so 5δ ≤ ε. To get our two conditions to be true we take δ = min{1, ε/5}.
Proof: Given ε > 0 let δ = min{1, ε/5}. Then |x2 − 4| = |x+ 2||x− 2| < (4 + δ)|x− 2| ≤ 5δ ≤ ε.

The idea that if f(x) is a polynomial then |f(x)−L| should contain a factor of |x−c| is applicable
in general. Here is an example that looks a little different.

Example 32. Problem: Show limx→1 x
4 − 3x3 + x2 − 1 = −2.

Reasoning: We need to show |x4 − 3x3 + x2 − 1 − (−2)| is small when |x − 1| is small, and have
just said that this should occur because the first expression contains a factor |x − 1|. Let’s try to
find the factor by long division of polynomials. (I may not use your favorite format for such long
division, but you can always do it yourself. however you prefer.)

x4 − 3x3 + x2 − 1− (−2) = x4 − 3x3 + x2 + 1

= x3(x− 1)− 2x3 + x2 + 1

= x3(x− 1)− 2x2(x− 1)− x2 + 1

= (x3 − 2x2)(x− 1)− x(x− 1)− x+ 1

= (x3 − 2x2 − x)(x− 1)− 1(x− 1)

= (x3 − 2x2 − x− 1)(x− 1)

Note that although we had to do this working step-by-step to get the factorizations, in the proof
we only need to state what the factorization is (we don’t need to include all steps) because the
reader could verify it quickly by multiplying out the factors.

Now we want to make sure the factor multiplying (x − 1) is not too big. As in the previous
problem it helps to insist that δ < 1. When |x − 1| < δ < 1 we have 0 < x < 2, so |x|3 < 8,
2|x|2 < 8 and |x| < 2 from which we have the following (admittedly not very good) bound using
the triangle inequality:

|x3 − 2x2 − x− 1| ≤ |x|3 + 2|x|2 + |x|+ 1 < 8 + 8 + 2 + 1 = 19.

The reason we did not try to get a better bound in this expression is that it does not matter. If
we take δ ≤ 19ε then we will still get the result we seek. To fit our two conditions on δ we use a
minimum as usual.
Proof: Given ε > 0 let δ = min{1, ε/19}. If 0 < |x − 1| < δ then x ∈ (0, 2) so |x| < 2 and we can
compute

|x4 − 3x3 + x2 − 1− (−2)| = |x3 − 2x2 − x− 1||x− 1| ≤
(
|x|3 + 2|x|2 + |x|+ 1

)
|x− 1| < 19δ ≤ ε.
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Sometimes one has a rational function where the factors in the denominator do not cancel with
terms from the numerator. In this case we can still factor out a copy of |x − c| but will be left
bounding a rational function rather than a polynomial. The important thing is that the bounds
for the terms must say the terms in the denominator stay away from 0 and that the terms in the
numerator stay away from ∞.

Example 33. Problem: Show that lim
x→0

x3 − x2

x2 + x+ 3
= 0.

Reasoning: We need to show that
∣∣∣ x3 − x2

x2 + x+ 3

∣∣∣ < ε when |x| < δ. Clearly we should factor out one

or more powers of x, but one will suffice. So if we wrote∣∣∣ x3 − x2

x2 + x+ 3

∣∣∣ ≤ |x|2 |x|+ 1

|x2 + x+ 3|

we see it is enough to have an upper bound for the factor with the fraction when |x| < δ. An upper
bound for a fraction uses a lower bound for the denominator, so we want to find a number d, so
|x2+x+3| > d. We’d expect this expression to be close to 3 if |x| is very small. One option to show
this occurs is to use the form of the triangle inequality in Lemma 3, because with a = x2 + x + 3
and b = 3 we obtain (also using the usual triangle inequality and |x| < δ at the end:∣∣|x2 + x+ 3| − 3

∣∣ ≤ |x2 + x| ≤ δ2 + δ

If we knew δ ≤ 1 then this is no more than 2δ ≤ 2, which gives |x2 + x+ 3| ≥ 1. Then we’d get∣∣∣ x3 − x2

x2 + x+ 3

∣∣∣ ≤ |x|2 |x|+ 1

|x2 + x+ 3|
≤ 2|x|2 < 2δ2 ≤ 2δ

where at the end we again used δ ≤ 1. Taking 2δ < ε will finish the proof.
Proof: Given ε > 0 let δ = min{1, ε/2}. If 0 < |x| < δ then∣∣|x2 + x+ 3| − 3

∣∣ ≤ |x2 + x| ≤ δ2 + δ ≤ 2

so that |x2 + x+ 3| ≥ 1. Then we may compute∣∣∣ x3 − x2

x2 + x+ 3

∣∣∣ ≤ |x|2 |x|+ 1

|x2 + x+ 3|
≤ 2|x|2 < 2δ2 < 2δ < ε

to complete the proof.

Proving a limit does not exist frequently proceeds in the way we did for sequences. Apply
contradiction, use the hypothesis of the existence of the limit to show that the function gets within
ε of two values that are separated by distance more than 2ε and obtain a contradiction by the
triangle inequality. All that is different is that in the sequence case the function values were points
arbitrarily far out in the sequence, whereas for a limit of a function they are values f(x) that occur
for x very close to c. Here are two examples.

Example 34. Problem: Show that limx→0
|x|
x does not exist.

Reasoning: If x > 0 then |x|/x = x/x = 1. If x < 0 then |x|/x = −x/x = −1, so we should be
able to use the same approach as in Example 11. Suppose the limit exists and is L, take ε = 1
and use the limit definition to find δ so 0 < |x| < δ implies |f(x) − L| < ε. Then for any x1, x2
with |x1| < δ, |x2| < δ we must have |f(x1)− f(x2)| = |f(x1)− L− (f(x2)− L)| < 2ε = 2 by the
triangle inequality. But if x1 > 0 then f(x1) = 1 and if x2 < 0 then f(x2) = −1, so if we can find
such numbers with size less than δ we get the contradiction 2 = |1− (−1)| = |f(x1)− f(x2)| < 2.
One way to get these numbers is just to take x1 = δ/2 and x2 = −δ/2.
Proof: Suppose the limit exists and is equal to L. Let f(x) = |x|/x when x 6= 0. Given ε = 1 take
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δ > 0 so 0 < |x| < δ implies |f(x)− L| < ε = 1. Let x1 = δ/2 and x2 = −δ/2. Observe f(x1) = 1
and f(x2) = −1. Both |x1| < δ and |x2| < δ, so

2 = |1− (−1)| = |f(x1)− f(x2)| = |f(x1)−L− (f(x2)−L)| ≤ |f(x1)−L|+ |f(x2)−L| < ε+ ε = 2

which gives a contradiction.

Example 35. Problem: Show that limx→0
1
x does not exist.

Reasoning: We see that 1
x is large when x is small. It seems likely that we can get it to output values

that have arbitrary separation, just by taking, eg, inputs x and x/2. This gives f(x/2) − f(x) =
(2/x)− (1/x) = 1

/x. If we put x < 1 then this difference is larger than 1. The usual way to get the

contradiction is to take ε so 2ε is the separation of the function values, so lets try ε = 1/2.
Proof: In order to obtain a contradiction, suppose there is L so limx→0

1
x = L. Write f(x) = 1

x .

With ε = 1
2 take δ > 0 so 0 < |x| < δ implies |f(x) − L| < ε. If 0 < x < min{1, δ} then also

0 < x
2 < δ, so that

1

x
=
∣∣2
x
− 1

x

∣∣ =
∣∣f(

x

2
)− f(x)

∣∣ ≤ ∣∣f(
x

2
)− L

∣∣+
∣∣f(x)− L

∣∣ < 2ε = 1.

This gives a contradiction because 0 < x < 1.
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EXERCISES FOR CHAPTER 12

Section 12.1: Limits of Sequences

12.1. Give an example of a sequence that is not expressed in terms of trigonometry but whose terms are exactly
those of the sequence of {cos(nπ )}.

12.2. Give an example of two sequences different from the sequence {n2 − n! + |n − 2|} whose first three terms
are the same as those of {n2 − n! + |n − 2|}.

12.3. Prove that the sequence
{

1
2n

}
converges to 0.

12.4. Prove that the sequence
{

1
n2+1

}
converges to 0.

12.5. Prove that the sequence
{
1 + 1

2n

}
converges to 1.

12.6. Prove that the sequence
{

n+2
2n+3

}
converges to 1

2 .

12.7. By definition, limn→∞ an = L if for every ε > 0, there exists a positive integer N such that if n is an
integer with n > N , then |an − L| < ε. By taking the negation of this definition, write out the meaning of
limn→∞ an �= L using quantifiers. Then write out the meaning of {an} diverges using quantifiers.

12.8. Show that the sequence
{
n4

}
diverges to infinity.

12.9. Show that the sequence
{

n5+2n
n2

}
diverges to infinity.

12.10. (a) Prove that 1 + 1
2 + 1

3 + · · · + 1
n < 2

√
n for every positive integer n.

(b) Let sn = 1
n + 1

2n + 1
3n + · · · + 1

n2 for each n ∈ N. Prove that the sequence {sn} converges to 0.

12.11. Prove that if a sequence {sn} converges to L , then the sequence {sn2} also converges to L .

Section 12.2: Infinite Series

12.12. Prove that the series
∑∞

k=1
1

(3k−2)(3k+1) converges and determine its sum by

(a) computing the first few terms of the sequence {sn} of partial sums and conjecturing a formula for sn ;
(b) using mathematical induction to verify that your conjecture in (a) is correct;
(c) completing the proof.

12.13. Prove that the series
∑∞

k=1
1
2k converges and determine its sum by

(a) computing the first few terms of the sequence {sn} of partial sums and conjecturing a formula for sn ;
(b) using mathematical induction to verify that your conjecture in (a) is correct;
(c) completing the proof.

12.14. The terms a1, a2, a3, · · · of the series
∑∞

k=1 ak are defined recursively by a1 = 1
6 and

an = an−1 − 2

n(n + 1)(n + 2)

for n ≥ 2. Prove that
∑∞

k=1 ak converges and determine its value.

12.15. Prove that the series
∑∞

k=1
k+3

(k+1)2 diverges to infinity.

12.16. (a) Prove that if
∑∞

k=1 ak is a convergent series, then limn→∞ an = 0.
(b) Show that the converse of the result in (a) is false.

12.17. Let
∑∞

k=1 ak be an infinite series whose sequence of partial sums is {sn} where sn = 3n
4n+2 .

(a) What is the series
∑∞

k=1 ak?
(b) Determine the sum s of

∑∞
k=1 ak and prove that

∑∞
k=1 ak = s.
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Section 12.3: Limits of Functions

12.18. Give an ε − δ proof that limx→2
(

3
2 x + 1

) = 4.

12.19. Give an ε − δ proof that limx→−1 (3x − 5) = −8.

12.20. Give an ε − δ proof that limx→2 (2x2 − x − 5) = 1.

12.21. Give an ε − δ proof that limx→2 x3 = 8.

12.22. Determine limx→1
1

5x−4 and verify that your answer is correct with an ε − δ proof.

12.23. Give an ε − δ proof that limx→3
3x+1
4x+3 = 2

3 .

12.24. Determine limx→3
x2−2x−3
x2−8x+15 and verify that your answer is correct with an ε − δ proof.

12.25. Show that limx→0
1
x2 does not exist.

12.26. The function f : R → R is defined by

f (x) =
⎧⎨
⎩

1 x < 3
1.5 x = 3
2 x > 3.

(a) Determine whether limx→3 f (x) exists and verify your answer.
(b) Determine whether limx→π f (x) exists and verify your answer.

12.27. A function g : R → R is bounded if there exists a positive real number B such that |g(x)| < B for each
x ∈ R.

(a) Let g : R → R be a bounded function and suppose that f : R → R and a ∈ R such that
limx→a f (x) = 0. Prove that limx→a f (x)g(x) = 0.

(b) Use the result in (a) to determine limx→0 x2 sin
(

1
x2

)
.

12.28. Suppose that limx→a f (x) = L , where L > 0. Prove that limx→a
√

f (x) = √
L .

12.29. Suppose that f : R → R is a function such that limx→0 f (x) = L .

(a) Let c ∈ R. Prove that limx→c f (x − c) = L .
(b) Suppose that f also has the property that f (a + b) = f (a) + f (b) for all a, b ∈ R. Use the result in

(a) to prove that limx→c f (x) exists for all c ∈ R.

12.30. Let f : R → R be a function.

(a) Prove that if limx→a f (x) = L , then limx→a | f (x)| = |L|.
(b) Prove or disprove: If limx→a | f (x)| = |L|, then limx→a f (x) exists.

Section 12.4: Fundamental Properties of Limits of Functions

12.31. Use limit theorems to determine the following:

(a) limx→1(x3 − 2x2 − 5x + 8)
(b) limx→1(4x + 7)(3x2 − 2)
(c) limx→2

2x2−1
3x3+1

12.32. Use induction to prove that for every integer n ≥ 2 and every n functions f1, f2, · · · , fn such that
lim
x→a

fi (x) = Li for 1 ≤ i ≤ n,

lim
x→a

( f1(x) + f2(x) + · · · + fn(x)) = L1 + L2 + · · · + Ln .
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12.33. Use Exercise 12.32 to prove that limx→a p(x) = p(a) for every polynomial
p(x) = cn xn + cn−1xn−1 + · · · + c1x + c0.

12.34. Prove that if f1, f2, . . . , fn are any n ≥ 2 functions such that limx→a fi (x) = Li for 1 ≤ i ≤ n, then

lim
x→a

( f1(x) · f2(x) · · · fn(x)) = L1 · L2 · · · Ln .

Section 12.5: Continuity

12.35. The function f : R − {0, 2} → R is defined by f (x) = x2−4
x3−2x2 . Use limit theorems to determine whether f

can be defined at 2 such that f is continuous at 2.

12.36. The function f defined by f (x) = x2−9
x2−3x is not defined at 3. Is it possible to define f at 3 such that f is

continuous there? Verify your answer with an ε − δ proof.

12.37. Let f : R → Z be the ceiling function defined by f (x) = �x	. Give an ε − δ proof that if a is a real
number that is not an integer, then f is continuous at a.

12.38. Show that Exercise 12.33 implies that every polynomial is continuous at every real number.

12.39. Prove that the function f : [1, ∞) → [0, ∞) defined by f (x) = √
x − 1 is continuous at x = 10.

12.40. (a) Let f : R → R be defined by

f (x) =
{

0 if x is rational
1 if x is irrational.

In particular, f (0) = 0. Prove or disprove: f is continuous at x = 0.
(b) The problem in (a) should suggest another problem to you. State and solve such a problem.

Section 12.6: Differentiability

12.41. The function f : R → R is defined by f (x) = x2. Determine f ′(3) and verify that your answer is correct
with an ε − δ proof.

12.42. The function f : R − {−2} → R is defined by f (x) = 1
x+2 . Determine f ′(1) and verify that your answer

is correct with an ε − δ proof.

12.43. The function f : R → R is defined by f (x) = x3. Determine f ′(a) for a ∈ R+ and verify that your
answer is correct with an ε − δ proof.

12.44. The function f : R → R is defined by

f (x) =
{

x2 sin 1
x if x �= 0

0 if x = 0.

Determine f ′(0) and verify that your answer is correct with an ε − δ proof.

ADDITIONAL EXERCISES FOR CHAPTER 12

12.45. Prove that the sequence
{

n+1
3n−1

}
converges to 1

3 .

12.46. Prove that limn→∞ 2n2

4n2+1 = 1
2 .

12.47. Prove that the sequence {1 + (−2)n} diverges.

12.48. Prove that limn→∞ (
√

n2 + 1 − n) = 0.
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